
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapter 7: Arrays

2Copyright 2006 by Pearson Education

Lecture outline

� advanced array usage

� arrays as parameters to methods

� arrays as return values

� advanced file I/O

� file output using PrintStream

� fixing the file-not-found issue

3Copyright 2006 by Pearson Education

Arrays as parameters and Arrays as parameters and

return valuesreturn values

reading: 7.1

4Copyright 2006 by Pearson Education

Arrays as parameters
� An array can be passed as a parameter.

� Syntax (declaration):
public static <type> <name>(<type>[] <name>) {

� Example:

public static double average(int[] numbers) {

� Syntax (call):
<method name>(<array name>);

� Example:

int[] scores = {13, 17, 12, 15, 11};

double avg = average(scores);

5Copyright 2006 by Pearson Education

Array parameter example
public static void main(String[] args) {

int[] iq = {126, 84, 149, 167, 95};
double avg = average(iq) ;
System.out.println("Average = " + avg);

}

public static double average(int[] array) {
int sum = 0;
for (int i = 0; i < array.length; i++) {

sum += array[i];
}
return (double) sum / array.length;

}

� Output:
Average = 124.2

6Copyright 2006 by Pearson Education

Arrays passed by reference
� Arrays are objects.

� When passed as parameters, they are passed by reference.

(Changes made in the method will also be seen by the caller.)

� Example:

public static void main(String[] args) {
int[] iq = {126, 167, 95};
doubleAll(iq) ;
System.out.println(Arrays.toString(iq));

}

public static void doubleAll(int[] array) {
for (int i = 0; i < array.length; i++) {

array[i] *= 2;
}

}

� Output:
[252, 334, 190]

7Copyright 2006 by Pearson Education

Array parameter diagram
public static void main(String[] args) {

int[] iq = {126, 167, 95};
doubleAll(iq) ;
System.out.println(Arrays.toString(iq));

}

public static void doubleAll(int[] array) {
for (int i = 0; i < array.length; i++) {

array[i] *= 2;
}

}
� Output:

[252, 334, 190]

95167126value

210index

iq

array

190334252value

210index

8Copyright 2006 by Pearson Education

Output parameters
� output parameter: An array or object passed as a

parameter that has its contents altered by the method.

� We can pass an array and the method can change its contents.

� Example:

int[] nums = {5, -1, 3, 14, 8, 7};

Arrays.sort(nums);

System.out.println(Arrays.toString(nums));
Arrays.fill(nums, 42);

System.out.println(Arrays.toString(nums));

Output:

[-1, 3, 5, 7, 8, 14]

[42, 42, 42, 42, 42, 42]

9Copyright 2006 by Pearson Education

Arrays as return values
� An array can be returned from a method.

� Syntax (declaration):

public static <type>[] <name>(<parameters>) {

� Example:
public static int[] countDigits(int n) {

...
}

� Syntax (call):

<type>[] <name> = <method name>(<parameters>);

� Example:

int[] digits = countDigits(229231007);

10Copyright 2006 by Pearson Education

Array return example
public static int[] countDigits(int n) {

int[] counts = new int[10];
while (n > 0) {

int digit = n % 10;
n = n / 10;
counts[digit]++;

}
return counts;

}

public static void main(String[] args) {
int[] tally = countDigits(229231007);
System.out.println(Arrays.toString(tally));

}

Output:
[2, 1, 3, 1, 0, 0, 0, 1, 0, 1]

11Copyright 2006 by Pearson Education

Array parameter questions
� Write a method named average that accepts an array of

integers and returns the average of the element values.

� Write a method named contains that accepts an array

of integers and a target value and returns whether the
array contains the target value.

� Write a method named roundAll that accepts an array
of double s and rounds each to the nearest whole

number.

� Improve the previous Histogram and Sections programs
by making them use parameterized methods.

12Copyright 2006 by Pearson Education

Array parameter answers
public static double average(int[] numbers) {

int sum = 0;
for (int i = 0; i < numbers.length; i++) {

sum += numbers[i];
}
return (double) sum / numbers.length;

}

public static boolean contains(int[] values, int ta rget) {
for (int i = 0; i < values.length; i++) {

if (values[i] == target) {
return true;

}
}
return false;

}

public static void roundAll(double[] array) {
for (int i = 0; i < array.length; i++) {

array[i] = Math.round(array[i]);
}

}

13Copyright 2006 by Pearson Education

Array parameter question
� Modify our previous Sections program to use methods

for structure. Pass arrays as parameters and return.

Section #1:
Sections attended: [9, 6, 7, 4, 3]
Student scores: [20, 18, 20, 12, 9]
Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Section #2:
Sections attended: [6, 7, 5, 6, 4]
Student scores: [18, 20, 15, 18, 12]
Student grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Section #3:
Sections attended: [5, 6, 5, 7, 6]
Student scores: [15, 18, 15, 20, 18]
Student grades: [75.0, 90.0, 75.0, 100.0, 90.0]

14Copyright 2006 by Pearson Education

Array param. answer
// This program reads a file representing which stu dents attended
// which discussion sections and produces output of the students'
// section attendance and scores.
// This version uses methods for structure.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileN otFoundException {

Scanner input = new Scanner(new File("sections.txt"));
while (input.hasNextLine()) {

// process one section
String line = input.nextLine();
int[] attended = countAttended(line);
int[] points = computePoints(attended);
double[] grades = computeGrades(points);
results(attended, points, grades);

}
}

// Produces all output about a particular section.
public static void results(int[] attended, int[] po ints, double[] grades) {

System.out.println("Sections attended: " + Arrays.to String(attended));
System.out.println("Sections scores: " + Arrays.toSt ring(points));
System.out.println("Sections grades: " + Arrays.toSt ring(grades));
System.out.println();

}

...

15Copyright 2006 by Pearson Education

Array param. answer 2
...

// Counts the sections attended by each student for a particular section.
public static int[] countAttended(String line) {

int[] attended = new int[5];
for (int i = 0; i < line.length(); i++) {

char c = line.charAt(i);
// c == '1' or c == '0'
if (c == '1') {

// student attended their section
attended[i % 5]++;

}
}
return attended;

}

// Computes the points earned for each student for a particular section.
public static int[] computePoints(int[] attended) {

int[] points = new int[5];
for (int i = 0; i < attended.length; i++) {

points[i] = Math.min(20, 3 * attended[i]);
}
return points;

}

// Computes the percentage for each student for a p articular section.
public static double[] computeGrades(int[] points) {

double[] grades = new double[5];
for (int i = 0; i < points.length; i++) {

grades[i] = 100.0 * points[i] / 20.0;
}
return grades;

}
}

16Copyright 2006 by Pearson Education

File outputFile output

reading: 6.4 - 6.5

17Copyright 2006 by Pearson Education

Prompting for a file name
� We can ask the user to tell us the file to read.

� We should use the nextLine method on the console Scanner ,

because the file name might have spaces in it.

// prompt for the file name
Scanner console = new Scanner(System.in);

System.out.print("Type a file name to use: ");

String filename = console.nextLine();

Scanner input = new Scanner(new File(filename));

� What if the user types a file name that does not exist?

18Copyright 2006 by Pearson Education

Fixing file-not-found issues
� File objects have an exists method we can use:

Scanner console = new Scanner(System.in);
System.out.print("Type a file name to use: ");
String filename = console.nextLine();
File file = new File(filename);

while (!file.exists()) {
System.out.print("File not found! Try again: ");
String filename = console.nextLine();
file = new File(filename);

}
Scanner input = new Scanner(file); // open the fil e

Output:

Type a file name to use: hourz.text
File not found! Try again: h0urz.txt
File not found! Try again: hours.txt

19Copyright 2006 by Pearson Education

Output to files
� PrintStream : An object in the java.io package that

lets you print output to a destination such as a file.

� System.out is also a PrintStream .

� Any methods you have used on System.out
(such as print , println) will work on every PrintStream .

� Printing into an output file, general syntax:
PrintStream <name> =

new PrintStream(new File(" <file name>"));

...

� If the given file does not exist, it is created.

� If the given file already exists, it is overwritten.

20Copyright 2006 by Pearson Education

Printing to files, example
� Example:

PrintStream output = new PrintStream(new File("outpu t.txt"));

output.println("Hello, file!");

output.println("This is a second line of output.");

� You can use similar ideas about prompting for file names here.

� Do not open a file for reading (Scanner) and writing

(PrintStream) at the same time.

� You could overwrite your input file by accident!

� The result can be an empty file (size 0 bytes).

21Copyright 2006 by Pearson Education

PrintStream question
� Modify our previous Sections program to use a

PrintStream to output to the file section_output.txt .

Contents of section_output.txt:

Section #1:
Sections attended: [9, 6, 7, 4, 3]
Student scores: [20, 18, 20, 12, 9]
Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Section #2:
Sections attended: [6, 7, 5, 6, 4]
Student scores: [18, 20, 15, 18, 12]
Student grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Section #3:
Sections attended: [5, 6, 5, 7, 6]
Student scores: [15, 18, 15, 20, 18]
Student grades: [75.0, 90.0, 75.0, 100.0, 90.0]

22Copyright 2006 by Pearson Education

PrintStream answer
// This program reads a file representing which

students attended
// which discussion sections and produces output

of the students'
// section attendance and scores, using methods

for structure.
// This version uses a PrintStream for output.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws

FileNotFoundException {
Scanner input = new Scanner(new

File("sections.txt"));
PrintStream out = new PrintStream(new

File("section_output.txt"));
while (input.hasNextLine()) { //

process one section
String line = input.nextLine();

